前端学习记录
  • 前言及目录
  • 前端基础
    • HTML
    • CSS
      • CSS学习之布局
    • JavaScript
      • 跟着月影学JavaScript
      • JavaScript之对象、原型链及继承
      • JavaScript中的类
      • onclick与addEventListener区别
      • JS手撕题
    • HTTP与浏览器
      • HTTP实用指南
      • Web开发的安全之旅
    • 通用知识
      • 前端必须知道的开发调试知识
      • 前端设计模式应用
      • Web 标准与前端开发
  • 数据结构及算法
    • 数据结构
      • 1、线性表(List)
      • 2、堆栈(Stack)
      • 3、队列(Queue)
      • 4、二叉树(Binary Tree)
      • 5、二叉搜索树与平衡二叉树(BST & AVL)
      • 6、堆(Stack)& 哈夫曼树 & 并查集
      • 7、图(Graph)
        • 图论——解决最小生成树问题(Kruskal算法&Prim算法)
      • 8、排序(sort)
      • 9、散列表(hash)
      • 数据结构习题
        • 第一周:最大子列和算法、二分查找
        • 第二周:线性结构
        • 第三周:栽树(二叉树等)
        • 第四周:二叉搜索树&二叉平衡树
        • 第五周:堆&哈夫曼树&并查集
        • 第六周:图(上)连通集 、DFS&BFS
        • 第七周:图(中)Floyd算法求最短路
        • 第八周:图(下)
        • 第九周:排序(上)归并&堆排序
        • 第十周:排序(下)
        • 第十一周:散列查找 & KMP
    • CS基础
      • 编译原理 实验一 词法分析器设计
      • 编译原理 实验二 LL(1)分析法程序
    • LeetCode
      • 冲刺春招-精选笔面试 66 题大通关
        • day1:21. 合并两个有序链表、146. LRU 缓存、25. K 个一组翻转链表
        • day2:14. 最长公共前缀、3. 无重复字符的最长子串、124. 二叉树中的最大路径和
        • day3:206. 反转链表、199. 二叉树的右视图、bytedance-016最短移动距离
        • day4:1. 两数之和、15. 三数之和、42. 接雨水
        • day5:7. 整数反转、215. 数组中的第K个最大元素、23. 合并K个升序链表
        • day6:33. 搜索旋转排序数组、54. 螺旋矩阵、bytedance-006. 夏季特惠
        • day7:53. 最大子数组和、152. 乘积最大子数组、41. 缺失的第一个正数
        • day8:20. 有效的括号、200. 岛屿数量、76. 最小覆盖子串
        • day9:105. 从前序与中序遍历序列构造二叉树、103. 二叉树的锯齿形层序遍历、bytedance-010. 数组组成最大数
        • day10:94. 二叉树的中序遍历、102. 二叉树的层序遍历、394. 字符串解码
        • day11:415. 字符串相加、5. 最长回文子串、72. 编辑距离
        • day12:64. 最小路径和、300. 最长递增子序列、bytedance-004. 机器人跳跃问题
        • day13:88. 合并两个有序数组、31. 下一个排列、4. 寻找两个正序数组的中位数
        • day14:121. 买卖股票的最佳时机、56. 合并区间、135. 分发糖果
        • day15:232. 用栈实现队列、22. 括号生成、128. 最长连续序列
        • day16:bytedance-007. 化学公式解析、129. 求根节点到叶节点数字之和、239. 滑动窗口最大值
        • day17:141. 环形链表、236. 二叉树的最近公共祖先、92. 反转链表 II
        • day18:322. 零钱兑换、198. 打家劫舍、 bytedance-003. 古生物血缘远近判定
        • day19:160. 相交链表、143. 重排链表、142. 环形链表 II
        • day20:704. 二分查找、43. 字符串相乘、bytedance-002. 发下午茶
        • day21题目:69. x 的平方根、912. 排序数组、887. 鸡蛋掉落
        • day22:151. 颠倒字符串中的单词、46. 全排列、2. 两数相加
      • 剑指 Offer
        • 剑指offer day1 栈与队列(简单)
        • 剑指offer day2 链表(简单)
        • 剑指offer day3 字符串(简单)
        • 剑指offer day4 查找算法(简单)
        • 剑指offer day5 查找算法(中等)
        • 剑指offer day6 搜索与回溯算法(简单)
        • 剑指offer day7 搜索与回溯算法(简单)
        • 剑指offer day8 动态规划(简单)
        • 剑指offer day9 动态规划(中等)
        • 剑指offer day10 动态规划(中等)
        • 剑指offer day11 双指针(简单)
        • 剑指offer day12 双指针(简单)
        • 剑指offer day13 双指针(简单)
        • 剑指offer day14 搜索与回溯算法(中等)
        • 剑指offer day15 搜索与回溯算法(中等)
        • 剑指offer day16 排序(简单)
        • 剑指offer day17 排序(中等)
      • 剑指 Offer 专项突击版
  • 前端进阶
    • React
      • 响应式系统与 React
      • React学习小记
      • Redux学习之Redux三原则、createSore原理及实现
    • Vue
    • TypeScript
      • TypeScript入门
      • TypeScript 类型体操练习
        • Easy题(13/13)
        • Middle(20/72)
    • 前端工程化
      • Webpack知识体系
    • Node
    • 前端动画与绘图
      • WebGL基础
      • 前端动画简介
      • Floating UI 使用经验分享 - Popover
      • Floating UI 使用经验分享 - Dialog
      • Three.js 学习
        • 学习记录
        • 资源记录
    • 前端性能优化
    • 跨端
      • RN 学习小记之使用 Expo 创建项目
    • 开源
    • SEO 优化
      • 搜索引擎优化 (SEO) 新手指南笔记
  • 笔面试记录
    • 面经集锦
      • 2022春暑期实习MetaApp一二面面经
      • 2022春暑期实习字节前端一面凉经
    • 笔试复盘
      • 2022春暑期实习-美团前端-笔试
      • 2022春暑期实习-360前端-笔试(AK)
      • 2022春暑期实习-京东前端-笔试
      • 2022春暑期实习-网易雷火前端-笔试(AK)
      • 2022春暑期实习-网易互联网前端-暑期实习笔试
由 GitBook 提供支持
在本页
  • 11-散列1 电话聊天狂人 (25分)
  • 思路
  • 代码
  • 测试点
  • 11-散列2 Hashing (25分)
  • 思路
  • 代码
  • 测试点
  • 11-散列3 QQ帐户的申请与登陆 (25分)
  • 题目大意
  • 思路
  • 代码
  • 测试点
  • 11-散列4 Hashing - Hard Version (30分)
  • 题目大意
  • 思路
  • 代码
  • 测试点
  • Kmp 串的模式匹配 (25分)
  • 思路
  • 代码
  • 测试点

这有帮助吗?

在GitHub上编辑
导出为 PDF
  1. 数据结构及算法
  2. 数据结构
  3. 数据结构习题

第十一周:散列查找 & KMP

上一页第十周:排序(下)下一页CS基础

最后更新于3年前

这有帮助吗?

学习指路博客

11-散列1 电话聊天狂人 (25分)

一定要做。如果不知道怎么下手,可以看“小白专场”,将详细给出C语言实现的方法

思路

散列查找,插入的时候若键值已存在改改操作就好,直接用之前的模板

代码

#include <iostream>
#include <cmath>
#include <utility>
using namespace std;
const int MaxSize = 100000;
typedef int Index;//散列后的下标
//散列单元状态类型,分别对应:有合法元素、空单元、有已删除元素
typedef enum {Legitimate, Empty, Deleted} EntryType;
struct Person {
    string str;
    int num;
    bool operator!=(const Person& p) {
        return str != p.str;
    }
} per;
typedef Person DataType;//数据的类型
struct HashNode {   //散列表单元类型
    DataType data;      //存放元素
    EntryType flag;     //单元状态
};
struct HashTable {  //散列表类型
    int TableSize;      //表长
    HashNode *Units;    //存放散列单元的数组
};
typedef HashTable *ptrHash;
//返回大于N且不超过MaxSize的最小素数,用于保证散列表的最大长度为素数
int NextPrime(int N) {
    int i, p = (N%2) ? N+2 : N+1;//从大于N的下一个奇数p开始
    while(p <= MaxSize) {
        for(i = (int)sqrt(p); i > 2; i--) 
            if(!(p %i)) break;//不是素数
        if(i == 2) break;//for正常结束,是素数
        else p += 2;//试探下一个奇数
    }
    return p;
}
//创建一个长度大于TableSize的空表。(确保素数)
ptrHash CreateTable(int TableSize) {
    ptrHash H;
    int i;
    H = new HashTable;
    H->TableSize = NextPrime(TableSize);
    H->Units = new HashNode[H->TableSize];
    for(int i = 0; i < H->TableSize; ++i) 
        H->Units[i].flag = Empty;
    return H;
}
//返回经散列函数计算后的下标 
Index Hash(DataType Key, int TableSize) { 
    unsigned int h = 0; //散列函数值,初始化为0
    string str = Key.str;
    int len = str.length();
    for(int i = 0; i < len; ++i) 
        h = (h << 5) + str[i];
    
    return h % TableSize;
}
//查找Key元素,这里采用平方探测法处理冲突
Index Find(ptrHash H, DataType Key) {
    Index nowp, newp;
    int Cnum = 0;//记录冲突次数
    newp = nowp = Hash(Key, H->TableSize);
    //若该位置的单元非空且不是要找的元素时发生冲突
    while(H->Units[newp].flag != Empty && H->Units[newp].data != Key) {
        ++Cnum;//冲突增加一次
        if(++Cnum % 2) {
            newp = nowp + (Cnum+1)*(Cnum+1)/4;//增量为+i^2,i为(Cnum+1)/2
            if(newp >= H->TableSize)
                newp = newp % H->TableSize;
        } else {
            newp = nowp - Cnum*Cnum/4;//增量为-i^2,i为Cnum/2
            while(newp < 0)
                newp += H->TableSize;
        }
    }
    return newp;//返回位置,该位置若为一个空单元的位置则表示找不到
}
//插入Key到表中
bool Insert(ptrHash H, DataType Key) {
    Index p = Find(H, Key);
    if(H->Units[p].flag != Legitimate) {
        H->Units[p].flag = Legitimate;
        Key.num = 1;
        H->Units[p].data = Key;
        return true;
    } else {//该键值已存在
        H->Units[p].data.num++;
        return false;
    }
    
}
int main() {
    int N;
    cin >> N;
    N *= 2;
    ptrHash H = CreateTable(N+1);
    for(int i = 0; i < N; ++i) {
        cin >> per.str;
        Insert(H, per);
    }
    string minstr;
    int maxnum = 0;
    int sum = 0;
    for(int i = 0; i < H->TableSize; ++i) {
        HashNode h = H->Units[i];
        if(h.flag != Legitimate) continue;
        if(h.data.num > maxnum) {//有更狂的
            sum = 1;
            minstr = H->Units[i].data.str;
            maxnum = H->Units[i].data.num;
        } else if(h.data.num == maxnum) {
            sum++;
            if(h.data.str < minstr) minstr = h.data.str;
        }
    }
    if(sum == 1) {
        cout << minstr << ' ' << maxnum << endl;
    } else cout << minstr << ' ' << maxnum << ' ' << sum << endl;
    return 0;
}

测试点

11-散列2 Hashing (25分)

2014年考研上机复试真题,比较直白,一定要做;

思路

有几个坑,1不算素数,如果M为1的话要特判。这题因为没有删除操作直接输出下标,所以只要维护一个数组标记是否存过数。

代码

#include <iostream>
#include <cmath>
using namespace std;
const int maxn = 100005;
typedef long long ll;
int TableSize;
bool a[maxn];
bool isPrime(int m) { 
    if(m <= 1) return false; 
    int k = (int)sqrt(m);
    for(int i = 2; i <= k; ++i) {
        if(m % i == 0) return false;
    }
    return true;
}
int NextPrime(int m) {
    if(m % 2 == 0 || m == 1)
        m++;
    while(!isPrime(m)) m += 2;
    return m;
}
int Hash(int x) {
    return x % TableSize;
}
void Insert(int x) {
    int p = Hash(x);
    if(!a[p]) { //该位置没有元素
        a[p] = true;
        cout << p;
    } else {
        int newp = p;
        int i;
        for(i = 1; i <= TableSize; ++i) {
            newp = (p+i*i) % TableSize;
            if(!a[newp]) {
                a[newp] = true;
                cout << newp;
                return;
            }
        }
        cout << '-';
    }
}
int main() {
    int M, N, x;
    cin >> M >> N;
    TableSize = NextPrime(M);
    for(int i = 0; i < N; ++i) {
        cin >> x;
        Insert(x);
        if(i == N-1) cout << endl;
        else cout << ' ';
    }
    return 0;
}

测试点

11-散列3 QQ帐户的申请与登陆 (25分)

数据结构教材中的练习题,可以用散列,也可以用排序,有兴趣+有时间的,建议两种都试一下。选做;

题目大意

实现QQ新帐户申请和老帐户登陆的简化版功能。主要就是判断账号存在与否以及密码是否对应

思路

一开始用常规散列查找,移位法和平方探测法后两个样例一直错误,于是改成了用STL中map来替代…

代码

用STL中的map做的话,非常简洁

#include <iostream>
#include <string>
#include <map>
using namespace std;
int main() {
    map<string, string> user;//账号密码
    int N;
    string o, us, pw;
    cin >> N;
    for(int i = 0; i < N; ++i) {
        cin >> o >> us >> pw;
        if(o == "L") {//Login
            if(user.find(us) == user.end()) 
                cout << "ERROR: Not Exist" << endl;
            else if(user[us] == pw) 
                cout << "Login: OK" << endl;
            else cout << "ERROR: Wrong PW" << endl;
        } else if(o == "N") {//New
            if(user.find(us) != user.end()) 
                cout << "ERROR: Exist" << endl;
            else { 
                user[us] = pw;
                cout << "New: OK" << endl;
            }
        }
    }
    return 0;
} 

测试点

11-散列4 Hashing - Hard Version (30分)

很好玩的一道题哦,需要思考一下,想通了就很容易 —— 于是有时间就想想吧~ 实在想不通也没关系,下周习题课会讲的。

题目大意

  • 已知散列函数H(x) = x%N 以及用线性探测法解决冲突问题

  • 先给出散列映射的结果,反求输入顺序

    • 当元素x被映射到H(x)位置后,发现这个位置已经有y了,则y一定是在x之前被输入的

思路

拓扑排序!其实是将散列映射和拓扑排序融合在了一起~

代码

注意有个坑,入度都为0即不确定谁先输出时,挑最小的输出,所以这里用优先队列代替小顶堆来存,并用map记录对应下标~

#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <map>
using namespace std;
const int maxn = 1005;
int N;
int a[maxn], In[maxn];
int edge[maxn][maxn];
map<int, int> HashIndex;
void Topsort() {//拓扑排序
    for(int i = 0; i < N; ++i) {
        for(int j = 0; j < N; ++j) {
            if(edge[i][j] == 1) {
                In[j]++;
            }
        }
    }
    priority_queue<int,  vector<int>, greater<int> > q;
    for(int i = 0; i < N; ++i) {
        if(In[i] == 0 && a[i] >= 0) {
            q.push(a[i]);
        }
    }
    while(!q.empty()) {
        int num = q.top();
        q.pop();
        cout << num;
        int v = HashIndex[num];
        for(int i = 0; i < N; ++i) {
            if(v == i || edge[v][i] == -1) continue;//检查以v为起点的所有边
            if(--In[i] == 0) q.push(a[i]);
        }
        if(q.empty()) cout << endl;
        else cout << " ";
    }
}
int main() {
    memset(edge, -1, sizeof(edge));
    memset(In, 0, sizeof(In));
    cin >> N;
    for(int i = 0; i < N; ++i){
        cin >> a[i];
        HashIndex[a[i]] = i;
    }
    for(int i = 0; i < N; ++i) {
        if(a[i] < 0) continue;
        int Hash = a[i] % N;
        if(a[Hash] >= 0 && a[Hash] != a[i]) {//该位置已被占有
            for(int j = Hash; j != i; j = (j+1) % N) {
                edge[j][i] = 1;
            }
        }
        
    }
    Topsort();
    return 0;
}

测试点

Kmp 串的模式匹配 (25分)

大家可以把找来的各种模式匹配算法都在这里测试一下,看看效果如何。

思路

没啥好说的,KMP就完事了

代码

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define div 1000000007
const int maxn = 1000005;
const int inf  = 0x3f3f3f;
int N,M;
int nxt[maxn];
void getnxt(string t) {
    int len = t.length();
    int i = 0, j = -1; 
    nxt[0] = -1;
    while (i < len) {
        if (j == -1 || t[i] == t[j]) {
            i++, j++;
            if (t[i] == t[j])
                nxt[i] = nxt[j]; // next数组优化
            else
                nxt[i] = j;
        } else
            j = nxt[j];
    }
}

int KMP(string s, string t) {//s为文本串,t为模式串(短的那个)
    getnxt(t);
    int len1 = s.length();
    int len2 = t.length();
    int i = 0, j = 0, ans = 0;
    while (i < len1) {
        if (j == -1 || s[i] == t[j]) {
            i++, j++;
            if (j >= len2) {
                return i-j;
            }
        } else
            j = nxt[j];
    }
    return -1;
}
int main(){
    ios::sync_with_stdio(false);
    string String, Pattern;
    cin >> String;
    cin >> N;
    for(int i = 0; i < N; ++i) {
        memset(nxt, 0, sizeof(nxt));
        cin >> Pattern;
        int k = KMP(String, Pattern);
        if(k == -1) cout << "Not Found" << endl;
        else cout << String.substr(k) << endl;
    }
    return 0;
}

测试点

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
题目集总目录
数据结构学习笔记<9> 散列查找
本题链接
本题链接
本题链接
本题链接
本题链接